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The structure of the outer layers of the stars.
By N. A. Kosirev and V. A. Ambarzumian.

1. Introduction. The theory of the inner structure of
the stars, which is based on the hypothesis of radiative equili-
brium, at present is not yet able to solve the problems imposed,
i.e. to state the functional dependence between the funda-
mental physical, dynamic and geometric characteristics
for every inner point of the stars. The reason of this circum-
stance is to be sought in our ignorance how the sources of
energy in the stars are distributed. In fact, the unknown
function of the optical mass 7 namely B(r), which represents
the radiation of an absolutely black body at a temperature of
the given layer, is determined by the following integral
equation?): '

f@=B(r)-3 [ Eilr—2|B() dt (1)

where f(z) is the function which represents the dependence of
the quantity of energy formed, per every unit of the optical
o

mass, on the optical mass itself, and where £7x =Ie‘x’/l-dz.
I

If we knew f(z), the function B(z) thereby would be deter-
mined as one-valued ?) and the main part of the problem would
be solved. However in the present time the physics cannot give
us any notion about the form of the function f(z), and therefore
we have to determine it by empiric ways. As yet this empirical
determination is stated only for the outer layers of the sun,
proceeding from the distribution of the brightness over its
disk3). However, for comprehensible reasons, this method is
not applicable to stars.

In the present work we suggest a method of investi-
gation of the outer layers of the stars which is based on the
distribution of energy in their spectra. This problem as we
are about to show, will come to the solution of an integral
equation of the first type, the same solution we obtain in the
form of a series of polynomes. In order to solve the above
equation wé have to make use of the tables appended to the
present paper. Through this solution we are able to find the
function B(z) and, in case of need, the function f(z) by means
of -one quadrature according to formula ().

2. In our derivation we shall admit the coefficient of
absorption to be independent of the length of the wave, i. e.
we shall admit that the stars radiate and absorb like a »grey
body«“) The visible brightness of a point, which is at an

angular distance 4 from the centre of the disk, will be expressed

by the following formula'
Y/

700, 6)= JE(}.,T) j/'pdllsecesecézgd/z (2)

where £(/, T') is the radiation of an absolutely black body,
the temperature being 7" and the length of the wave 4, 4 is
the depth on which the layer is, ¢ the density and x the coeffi-
) .
cient of absorption. Denoting jzgd/zzr we have:
o

3
In order to obtain the brightness of the whole star in the
monochromatic light, the length of the wave being 4, we shall
have to integrate /(2, §) for the whole disk. If we denote by »
the distance of a point of the disk to the centre of the disk,

the full brightness in the length of the wave will be expressed
as follows:

oo
10, 8)=[ EQ., T) e=5® secd dr .
o

R oo
znj jE(/ T)e_ts"cgsecﬁdz
. o o
where R is the radius of the disk. For the unit of area we get:

R oo
p(y=2/R*[ rdr [ EQ, T)e "> secd de. (4)
[e] ]
Thus ¢(2) will represent, leaving aside a constant multiplier,
the observed distribution of energy in the spectrum of a star.
Altering the order of integration in (4) and noticing that
between d and # the following dependence exists:

secd = RJJ (&2 1) ®)

we find:

R

g()=2/R-[ EQ., T)dr [ e *RINE=pjy(R2— %) dr (6) |

o

Supposing here: )
x=1R[| (B2
we get:

p(A)=2 I E().-, T)r I e *Flx2-dx dr . )

1) The derivation of this equatlon see AN 229.89. The solution of this equation is represented in the form of a Neumann series. On the

convergence of the same series see MN 87.651-655.

2) On the uniqueness of the solution, i. e. the absence of any solutions being different from zero of the equatlon B(t)=3 sz T—¢ B()ds

see MN 87.209—215.
3) Milne; Phil. Trans. A 220.217.
4) Z. A. Milne; Phil. Trans. A 223.201-255.

V. Paychomenko; AN 227.305. N. Kosirev und V. Ambarzumian; AN 229.85.
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Denoting: [es/l__ 1]‘1=e—‘/)‘+e—2‘/l+--- oAl g (18)
¢ —ty).2 .o %2 . consequently ')
'IS’e Iy -dy=15‘e Ja?-dx=EdyT ©) - 0 oo
T A —1 —hs|h
we reduce the equation (7) to: j [/ = 1] 71 s ds = 2 5 e~ sl s ds . (19)
o h=10°
oo
g()=2 [ Eiyt EQL, T) de . (g) | But we ha‘gj N
o
: —hs/h _gmtrgmtr. | pmx xm dy =
‘Let us somewhat transform this equation. Introducing a é' ¢ s" ds=2" y/ﬁ’ Bf em* a™ dx

new function:

(10)

. oo
u=Ez'31=j e |y3dy
I

we notice that

: du=—Etyr-dr.

Thus the equation (g) is reduced to the form:
s

gW)=2 [ EQ, T)du.

(11)

(12)

Let us consider Z to be a function of ¢,/7'=s, and not a
function of 7. Then making use of Planck’s formula we get:
20
}.5(p(l)/2cl=j‘ [e“'/7‘~1]—1-du/drds (13)
o
where ¢, and ¢, in Planck’s formula represent constant quan-
tities, namely ¢, = 3.696° 10~ ° Erg cm? sec™ 1, cy=1.435cm deg
and so=¢y/7,, wherein 7 is the temperature of the upper
limit of a star. Let us denote the left hand side of equation (13)

by w(%) and put dw/ds=K (s). In this case the equation (13)
will be expressed as follows:

w(iy=J [ —1]7 K(s) ds .

Thus we obtain an integral equation of the first type between
the known function (i) and the sought function & ().

(14)

3. Let us admit that the function & (s) can be developed
into a series of polynomes, which do not contain the zero

powers.
K(S>=£1P1<S>+£2P2(S>+"'+[nPn<5)+"' (15)
Substituting ‘in (14) the above expression for A (s) we find:
M=
=j [~ 1]—12 i Pi(s)ds= 2 c,f [¢/* — 1] Py(s) ds . -
If Pis)=a) s+a® 2+ +ad) s (17)

then the integration (16) will'come to the calculation of integrals
having the form:

[e‘/)‘ —1]7ts"ds.

Ogﬂg

The expression [es/l—l]‘.l, as it is easy to convince oneself,
can be developed into the series:

%) The scale for measuring A will be selected afterwards.

=lm+1/}lm+x 'F(M + I)

(20)

and thus

f[es/k— = s ds=2"* T'(m + 1) 2 1At =
o k=1
=M T(m+1) {(m+1) (21)

where Riemann’s notation is introduced:

oo
{im+1)= 2 /it

=1

(22)

Likewise we find that:

Qi1 = [ =1]7x Pi(s) ds=a, 22 T(2) E(2) +
o

+a, 43 I(3) E(3)+"""+an Mt Pln+1){(n+1)
and finally:

(23)

oo
wd)= D e Q) (24)
Quite in the same way, knowing the development of the
function (1) into polynomes Q;(%) and making use of the
formula (23) one can calculate from the coefficients of the
same polynomes the corresponding coefficients of the
polynome P;(s) connected with Q:(A) by the equation:

oo

0= [t =117 £i(s) ds

o

(25)

and thus one can write the development of the function &K ©)
already into polynomes Zi(s). Still let us notice that if
Q:(2) contains merely even powers, P;(s) will contain merely
odd ‘ones, which fact is important for our further investi-
gations.

4. We shall develop the function W (%) according to
the system of orthogonal and normalised polynomes of the
even power, to begin with the second one, in the interval of
the alteration of A from o to 1%). These polynomes may be
obtained by means of orthogonalisation and normalisation
of the following system of functions:

12’;'4’16,...'121»,... (26)

In order to show the possibility of this development, it is

1) The possibility of the integration term by term, i. e. of formula (19) for =1 can be readily proved.
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indispensable to prove the completeness of the system of | a value e>o exists such that no matter how little 7>o should

functions (26)1).

For this purpose let us previously prove a theorem of
general character:

Theorem: If we have a complete system of continuous
and orthogonal functions, normalised in the interval (a, 8):

P12, 92(8), 5 g (), -+ (27)

one can represent uniformly and approximatively any function
f(¢) as a linear combination of the following functions:

U= 910 46, Yo &)= 92) d, +, pu() = gut)dr, - (28)

if /(#) is equal to zero in case of #=¢ and has a continuous
derivative f'(7).

In order to prove this theorem we shall have to make use
of the following lemma:

Lemma: Suppose we have a sequence of continuous
functions in the interval (a, 4):

?1(0’ Pz(f), "']57‘(1)7 (29>
If we denote:
4 4
6= r0d  @O=[ @ a, -
a ; a (30>
gi (@)= pu() dz---
from the relation
b
lim fpvz(t) dt=o (31)
12 o0 4
follows that: 7v(Z)=»ro
where =) represents a uniform convergence.
First of all let us notice that from the relation (31)
follows:
s
i () de=o.
Jim [ o) di=o (32)

In fact we have:
22()= (j’m dz) =(-a)f p2(¢) de=(b-a) Np,  (33)

as it follows from the Booniakovsky-Schwarz inequality,
if we denote: ’

_ f 2A(0) ds=p, . (34)

From (33) follows:
5 s
JorwasfG-a) mpar=-apnp,. ()
From (31) and (35) follows (32). In order to prove the lemma

it is easy to show that the sequence of functions ¢+(¢) is uni-
formly continuous. We admit the contrary.

In this case |

be, it is possible to find such number Vi, % and 5, where-
by || <7, that

lgvk(i" + k) — Tor (lk)l >¢ (36)

and moreover we shall have an infinite quantity of numbers .
Let us write the inequality (36) as follows:

[ e+ i

% N0 dt}>€.

%

In virtue of the Booniakovsky-Schwars inequality we have:
O+ My b+ My,

2
Ipvk<t> dl) é"/k'jpvkz(o ds= n Nka . (37)
Ik Y

Thus: I Np,>e or N_p,,k>e'2/r/
which stands in contradiction with the admission (31), since y§
may be selected as a no matter how little number.

Thus the lemma is proved.

Let us pass over to the proof of the theorem. From its
condition we have the relation of the completeness:

Jim f ( ) —j c,. tpv(z'))zdt———.o

v=r

. (38)

y
where cy=ff "(¢) 9»(2) d?.  On the score of the lemma from

(38) follows:

”

[70- ) ae)|=>o

V=1

(39)
whereof we get:

F)= 2 & Yu(?) (40)

whereby the series in the right hand side converges uniformly,
Thus the theorem is proved. Consequently the system w(2)
is a complete system of functions. If in particular we have a
system of orthogonal polynomes, the conjunction of their
integrals will also form a complete system of functions in
regard to any differentiable function, which in case of 7=g
can be transformed into zero. However one can show that the
system of functions ,(¢) is a complete one in regard to
any continuous function. In fact let @ (%) be the given
continuous function. Then one can select such a second
continuous function #¥(#), that ¥(z)=o0 and

S 0@~ wie)p dr<e )

where ¢ is a no matter how little positive number?).
According to Weierstrass’ theorem one can select such
a polynome Z(7), that

W)~ L(H<e (42)

') In this case we shall make use of the terminology adopted by R. Courant and Hilbert in »Methoden der Mathematischen Physike 1924.
*) As an example of the function U(2) the following function may serve: .

C@)=(-a)/l-P(a+0) (a<t<a+])
In this case 4/ represents the upper limit CIOHE

where /=g/40/2.

TA)=P@) (a+25259)
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in the whole interval (2,4). Thus
5
[ (@@ - LR de<(t~a) e (43)
Since W(a)=o, L(a)<e. If we denote M(f)=L(t)—L(a)
we can apply to #(?) the formula (39), i. e. we can select such
a z that ’

j (M(t) -Z o (t))2d1<e

but from the formulas (41), (42), (43) and (44) there will
follow the general relation of the completeness:

(44)

n

lim f (lD(t) = agn(t)) dr=o

NP0 2 —t

(45)

what we were about to prove.
Whereof already it is readily calculated that the set of

functions:
Ay AR A3, cee A0 eee (46)

forms a complete system?). If we orthogonalise and normalise
this system of functions in the interval from —1 to +1, the
functions with an odd index will contain merely odd powers,
and functions with an even index merely even powers?).

" Therefore, as it is easy to convince oneself, in the interval from

o to 1 the system of functions:
A28 16 g
will be a complete one.

(a7)

5. It is left to form from the system of functions:
22,048 28 ... g2m ..

a system of orthogonal polynomes normalised in the interval
(0,1). Here we indicate the first four polynomes, we have
calculated: :

Q:(A)=V5 42

Qy(A)=10.5 4% —7.5 A%

Q3(2)=15.575 A2~ 56.067 A%+ 44.050 A®

Q4(A)=184.252 A8 — 331.654 A® +178.583 4% —27.058 A2

(48)

In order to develop the function /(1) we shall have to cal-
culate the Fourier coefficients of the same function by means
of a numeric integration. Therefore it is indispensable to
have the tables of the polynomes Q,(4), Q,(4), - through
equal intervals. The table of the first four polynomes which we
have calculated follows with the paper. An active assistance
at the calculations of this table was lent to us by D. 7. Eropkin
and G. V. Fabrikant, we take the opportunity to express

. here our most sincere thanks.

Making use of the formula (23) we can calculate the
coefficients in the polynomes P;, P,, P;, P,, into which the
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function K (s) may be developed, which polynomes correspond
to the first four polynomes of the development of the function 1.

Thus in the first approximation we have:
K(s)=dulds =c; Py(5) + ca Po(s) + e3 P3(s) + c4 Py(s) . (49)
Since « = £7,7, by means of the integration (49) we obtain:
Eigt=c, R (5) + o Ro(S) + c3R3(8) + ¢4 Ry(s) + C (50)

Ri(s) =8f Pi(s)ds. (51)

We may admit in the formula (50) the permanent quantity
to be equal to zero, since in case of —co we have lim £7;¢ =o0;
on the other hand one can practically esteem that in this case
also 7—»oo, and consequently s—>o, whereof follows that
C=o. The polynomes R,(s), Ry(s), R3(s), Ry(s) are cal-
culated once for all and finally we obtain for EZzz:

Eigt =, Ry (5)+ o Ry(s) + g R3(s) + cg Ry (5)

where

(52)
where
R, (s)=0.6797 s? [
Ry(s)=0.4042 s*—2.2797 s? A
Ry(s)=o0.06014 s®—2.1584 s +4.7342 * ‘ (53)
R,y(5)=0.00455 $8—0.4528 5% +6.8750's* — 8.2246 s

6. Before we pass over to practical considerations con-
cerning the question of the numeric solution of the integral
equation (14), at first let us consider the question of the soleness

of its solution. First of all let us prove that the kernel [e‘/ - 1]t
is a general one. Since our equation is extended over an
infinite district, we shall determine the generality somehow
differently from the way first adopted by Hzlbert3).

Determination: The kernel K(4,s) being deter-
minedfor the whole district 0<2.<00, 0<s<00 is considered
to be a general one, if for any function «(4) one can find
such a function 4(s) that the following difference

(i) =a(h)~ [ KL, s)b(s) ds (A)
can be submitted to the condition
-
Je ™ () dh<e (B)

o

where ¢ represents any positive number proposed in advance.

First of all let us show that for any continuous function
oo

[we have in view such a function that j?e'“/l(l)z dA does

exist] one can find such a polynome (%), which does not
contain merely free members of zero power, that:

1) In this particular case, it is easy to convince oneself in the correctness of the above mentioned also without application of the general
theorem proved above. Namely, as we proved above, for any continuous function ® (#) one can find such a polynome 47(?) that:

S0 -a@ra

will be less than any positive number. Since in this case 2=0, thus 47(0) =0 and consequently 4/(#) does not contain any zero power.

2) Whereby we suppose that the orthogonalisation is to be effectuated in the ordinary course. Concerning the question of how the process
of orthogonalisation and normalisation is effectuated see Courant and Hilbert,loc. cit. p. 34. 3) Hilbert, D. Integralgleichungen, p. 25.
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o : : whereby the condition (B) is taken in consideration. Thus the
Ie"‘ [AQA)-M()]2dA<e (54) | generality of our kernel is proved. Now let us prove that our
o kernel is secluded from the left. Let us assume the contrary,

no matter how the positive number ¢ may be. First let us
select such a function B(1) which transforms itself into zero
in case of 4 =o, and satisfies the following condition:

(e o)

S e A@-B@Edi<y (s5)
where 7 represents any little positive number. This is readily
done, as it is easy to convince oneself (compare note to 4)-
We may extend the function B(1) also over the district
— 00 <A=o, if we attribute to the samé function the oddness.
Thus (as one can see from Sturm-Liouville’s problem referred
to Hermilte’s polynomes) one can find the following linear
combination of a great enough and finite number of polynomes:

 H (D) + ag Hy(A) togHy(A)+ +a, H,(L) (56)

+ oo n

_I e (B(l) - 2 lxiHi(/_'>)2dl <7 (s7)

=1

that

where 7, represents a no matter how little positive number,
and that

ey H1(0) + ag Hy(0) + otg H3(0) + -+ + o, H,(0)=2<g5 (58)

where g5 is also no matter how little. One can easily see that
by way of a conformable selection of the numbers 72 and 7
one can obtain

..‘Lm K . .

2

[ (B@)— M w Hi()—2) di<y,  (50)
— 00 =1

where 7, is as well a proposed positive number. From (55),

(57), (58) and (59) follows (54).

If we orthogonalise and normalise the system of functions:

I I BT L (60)

the same system, being complete in the sense of (54), will be

divided into two pasts, as each of the reciprocally orthogonal

polynomes will contain merely powers of similar evenness.

Whereof the completeness of the system of functions in the
interval (c, ) is readily calculated: .

22,048,258, g e (61)

Thus one always can find such a polynome % (1), containing
merely even powers, to begin with the second one, that

oo

J e [ - U@ di<e (62)

no ‘matter how the positive number ¢ may be.

Still from 3 follows that for the polynome A(R) one can
find such a polynome 4(s) that:

AL =f [e:/"l —1]714(s)ds . (63)
If we denote:
x(1)=a(2)~U(2) 64)
then . oo .
x()=a()— [ [~ 1]715(s) ds (65)

i.e. let us admit the existence of such a function ¢(4) that
in any case of s:

S TP =171 9() e di =o. (66)
Whereby : oo
Je M eaydi-r. (67)

If so, no matter how the function »(s) may be, for the function

x(A)=g(A)— j [ — 1] o(s) ds (68)

we shall have:
(o]

;j’ e 2 ()2 dh =5f [¢(2)—F()]2 e=* di

wherein is introduced the notation

(o<}
7= [ =117 o(s) ds . - (69)
Since from (66) follows:

Je ™™g 7() di=o

thus

o0 oo o0

Se P ardi={ " g0y +[e M@y di>1 (o)
which stands in contradiction to the generality of the kernel.
Thus the seclusion from the left is proved. Now let us admit
that our kernel is not secluded from the right. In this case
such a function p(s) must exist which satisfies the following
condition

S -
J P =17 00 ds=o (1)
in every case of A, and moreover the condition .
[e o}
fe s ds=1. (2)

Substituting 1/l =u, 1/s=¢ we find

§ [ =172 pafo)- 1/ dr=o (13

which stands in contradiction to the seclusion from the left
as the formulas (73) and (66) have a similar sense.
From the seclusion from the right follows the soleness
of the solution of the equation (14), since, if we admit the
existence of two solutions different from each other, the exi-
stence of a solution of equation (71) should follow, which

| should be different from zero.

7. On the score of the above investigations we see, that
the problem of a numeric solution of the integral equation (14)
comes to the statement of the coefficients: ¢, ¢, ¢5°-
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Since the polynomes (48) are orthogonal and normalised,
they may be calculated according to Fowrrier’s formulas:

‘1=f YA Q) A = [ W(h) Qy(h) da
’, 05 (75)
a=fv@) GO U a=fy@) Q).

Having in view that the function 1 (4) has been obtained
from observations, the calculation of the coefficients ¢, ¢,, ¢5, ¢4
comes to a numeric integration.

How completely and exactly, in every particular case,
the development of the function (i) into polynomes Q)
has been fulfilled one can judge by the precnseness observed
in the relation of completeness:

5’ NO: dl=2 . (75)

In any case Bessel’s inequality must be taken in consideration:

2 5,2%]“ NOXE (76)

We must notice that from observations made we obtain

¢(A) [and consequently also w(1)] with the exactness of a

constant multiplicator. If we denote by x(4) the visible distri-
bution of energy in the spectrum of a star, we shall have:

A (R) = RE 7 g (1) (77)

where 7 is the distance.from the star. Consequently if yy, y,,

¥3, 7a are the coefficients of the development of the function

st(l)/zcl into polynomes Ql, Q,, Qg, Q, thus

= R2[r? ¢ (78)

and the formula (52) may be expressed as follows:

R 7? Edyt =y Ry(S) + 72 Ro(S) + 15 Rs(s) + 74 Ry (s)  (79)

Since we can calculate for any star the coefficients y,, y,, 73, 74
consequently for any star we can obtain the following relations:

R 7% Eigr=p,(co| T)? + /82(‘2/T>4 +B85(ca] T)° + Byleo] T)® (80)

where o
B,=0.6797 y1—2.2797 ya+4.7342 y3—8.2246 7, l

Bo= 0.4042 y5—2.1584 y3+6.8750 y, (81)
Bs= 0.06014 y3—0.4528 74l :
8y= 0.00455 74

as one easily can see from the formulas (79) and (53). If we
admit in the formula (80) 7'= T, the temperature of the upper
limit, we obtain, since £7;o=4

R[22 = (6o T)* + Bolca| To)* + Bs(ca] T0)° + Ba(ca] 70)*  (82)
i. e. we obtain the relation between the radius and the tempe-
rature of the upper limit. Since we know 7, we can find the
graphic of the dependence between z and 7, making use of the
formula (80) and as well of the tables of the function E7zz,
quoted below?).
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8. To illustrate the exposed method we show below
its application to the following three stars: y Draconis,
‘@ Andromedae and « Ceti. The distribution of the brightness
in the spectra of these stars has been taken according to the
measurements effectuated by /. Welsing, J. Scheiner and
W. Miinch®) in the Observatorium in Potsdam. - For the
above stars they have measured the brightness in ten various
lengths of waves, namely:

0.451 4 0.472 4 0.494 @ O.5I4m ©0.535u 0.556u 0.577 1
0.593 @ 0.615u 0.642 .

In virtue of these points we have composed a graphic
of the function y(1) in some arbitrary scale (for the value of
the function). As for the scale of the length of waves, it has
been thus selected, that its unit should contain 0.666 . Thus
the argument 4 alters from o to 1, this being indispensable
since the polynomes, into which the function y (1) may be deve-
loped, are orthogonalised and normalised from o to 1. The
observations effectuated by Wilsing, Scheiner and Miinch
do not determine the value of the function y (4) for an alteration
of the argument from o.0o to 0.67 (in the new scale), thus we
had to join in some arbitrary way the point of the curve, the
abscissa of which is 4 =0.676, with the origin of the coordinates.
However this arbitrariness is almost hardly perceptible in the
results, as, the multiplicator A5 being present, the values
of the function y(4) in the indicated interval are small and,
the numeric integration being effectuated, this arbitrariness
does not give any perceptible fault. The numeric calculation
of the integrals (74) has been divided into two parts. We
have integrated the function y(4) Q;(4) separately in the
interval from &0 to 0.6 and separately in the interval from 0.6
to 1.0. These calculations have been effectuated according
to Sémpson’s formula:

ff(x) dx =

(6—a)[6n-[yo+ 2y, +4Ys+ 2yst -+ 4Von- o + 2Von—r +¥ai]. (83}

In the interval from o.0 to 0.6 we have taken z = 3, and in the
interval from 0.6 to r.oz= 10. The multiplication of the
values of the functions y(%) by the values of the polynomes
Q;(A) has been effectuated by means of an arithmometer and
also the addition ‘according to formula (83). As result of these
operations were obtained the coefficients y,, s, 73, 74 Whereof
by means of formula (81) the equation (80) was obtained for
each of the three investigated stars. Below we give a table of
the coefficients of this equation for the above stars:

Spec- | ‘
Star tral- By ! B. Bs B.;
type |
v Draconis  |Kj ||+0.07459 | —0.07226 | +0.00637 ’ 0.00004
aAndromedae| A | +0.05796 | —0.08071 | +0.00264 | —0.00002
o Ceti iMa | +0.0558 | —0.0813 |+0.0079 '—o 000T

1) The table containing 2Z7;T is composed according to the formula
2Bit=e" " (1 —7) +12 EiT
where the value of the function Z77 has been taken from: Jaknke und Emde, Funktionentafeln, 2. Aufl.

2) J. Wilsing; Effective Temperaturen von 199 hellen Sternen nach spektralphotometrischen Messungen von J. Wilsing, ]J. Sckeiner
und }. Miinck, Publ. d. Astrophys. Observ. zu Potsdam, Nr. 74, p. 66~73.
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ﬁ: 9. Now the main difficulty consists in 7 R?/7* or, what
| twould be the same thing, in the ignorance of 7. In the first
flapproximation we have taken To="Tes.| V2. Thus the per-
' ‘manent multiplicator for £7;7 has been determined, hereafter
according to equation (80), a graphic of the dependence be-
Kitween 7'* and 7 has been composed. If we denote 4 (2)=T*
E'»':and Ay=T4, for y Draconis we have the equation:
=t A(r)=Ay+0.90" 10%z +0.27 10172
for a Ceti:

A(r)=A,+0.87 10%7 +0.15- 10172

(84)

(85)
and for e Andromedae:

A(T)=Ay+0.86" 107 +0.39 10122 (86)
To make a comparison we mention the same equation for the
sun: A(r)=Ady+o.71 107 . (87)
Thus we can state that the gradient of radiation of an absolutely
black body, per every unit of the optical mass, is ninefold
greater in the sun than the same gradient in the stars, which
belong to later spectral types. But this gradient for « Andro-
medae is more than tenfold greater than the gradient for the
sun and has the tendency to increase, when we proceede in-
to the inner layers.

~ Thus on the evidence of the above mentioned, yet scanty
facts we can say that the gradient dA4/de increases with
the transition from later spectral types to earlier ones.
However the solving of the problem of the influence of the
arbitrariness in the selection of 7, on the values of the coeffi-
cients in the formulas (84), (85) and (86) is of great interest.
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For this purpose some calculations relating to the star y Dra-
conis have been effectuated which proved that by alteration of
7, by 200° this coefficient does not alter perceptibly as the
alteration is confined in the limits of the preciseness of the
graphic.

Having for each star the following equation:

A@)=Ay+ Ayt + Ay7* (88)
we can find, according to Schwarzschild, the distribution of
the brightness over the disk of the star. Namely if we denote
by « the cosine of the angular distance of the point from the
centre of the disk, we shall have: :

I(x)y=Ay+A,x+24,x% . (89)
Thus the brightness 7(x) on the disks of y Draconis, « Ceti
and « Andromedae is a square function of the cosine of the
angular distance from the centre of the disk, while for the sun
it is a linear one. ' -

It seems to us that the application of our method to
stars of the Algol-type may contribute to precisise the elements
which are calculated for their orbits, as the distribution of the
brightness over their disks will be known to us. Let us notice
that as we know A(7) and consequently also B(z) we can
calculate by means of formula (1) (%), i.e. the quantity of
formed energy as a function of the optical mass. Moreover,
making use of the equation which expresses the mechanic
equilibrium of a star, having adopted the equation of the
state of ideal gases and knowing B(7) we can investigate also
the gradient of the temperature for the unit of the length,
if we form some hypothesis relating to the molecular weight.

1. Tables of the Polynomes Q;(s), Qa(s), Qs(s), Qu(s)-

s Ql () Q:(s) Q4(s) Q4 (s) s O (s) Qs (s) Qs(s) Q4ls) s o (s) Qs (s) Q3(s) Q4(s)
0.000 0.000 ©0.000 0.000 0.000 | 0.I30 +0.038 —0.124 +0.247 —0.405 | 0.255 +0.145 —0.443 +0.788 —1.091
0.005 ©0.000 ©0.000 0.000 —0.00I | 0.I35 0.04T 0.133 0.265 0.434 | 0260 - 0.I5I 0459 0.810 1.112
0.010 ©.000 —0.001 +0.002 0.003 | 0.140 ©0.044 ©0.143 0.284 0.466 | 0.2065 ©0.I57 0475 0.831 1.130
0.015 +0.001 0.002 0.003 0.006 | ©0.I45 ©0.047 ©0.I53 ©0.303 0.493 | 0.270 0.163 ©0.491 0.854 1.147
0.020 0.00I 0.003 ©0.006 ©0.0II | o0.I150 o©0.050 0.163 0.322 0.521 | 0.27§ 0.16g 0.507 0.876 1.162
0.025 ©0.00I 0.005 0.0I0 ©.0I7 )

0.I55 +0.054 —0.174 +0.342 —o.550 | 0.280 +0.175 —o0.524 +0.898 —1.177
0.030 +0.002 —0.007 +0.014 —0.024 | o.160 o0.057 0.185 . 0.362 0.581 | 0.285 o0.182 0.540 ©0.9Ig  1.190
0.035 ©0.003 ©0.009 0.0I9 0.033 | 0.165 o0.061 0.1g6 0.382 0.611 | o0.2g0 0.188 0.556 ©.939  1.20I
0.040 0.004 ©0.0I2 0.025 0.043 | o.1j0 0.065 0.208 0404 0.642 | 0.295 0.195 0.573 0.960  I.210
0.045 ©0.005 ©0.0I5 ©0.031 ©0.055 | o.175 0.068 0.220 0426 0.671 | 0.300 ©0.20I  0.590 0.980  1.218
0.050 ©0.006 ©0.01g ©0.039 0.067

"0.180 +0.072 —0.232 +0.447 —0.699 | 0.305 +0.208 —o0.607 +0.999 —1I.225
0.055 +0.007 —0.022 +0.047 —0.080 0.185 0.077 0.244 ©0.469 ©0.730 | 0.310 o0.215 0.624 1.018 1.229
0.060 o0.008 o.027 0.055 0.096 0.1g0 0.081 ©0.257 0.491 0.761 | 0.315 0.222  0.04I 1.036 1.232
0.065 ©0.009 0.031 0.065  O.III 0.195 ©0.085 o0.2706 0.513 0.786 | 0.320 0.229 0.658 1.054 1.232
0.070  ©.0I1  0.036  ©0.075  0.129 | 4 50 0.089- 0.283 0.536 0.816 | 0.325 0.236 0.675 I.072 1.233
©0.075 . 0.0I3 0.042 0.086 0.147
0.080 +0.014 —0.048 +0098 —0.166 0.205 +0.094 —0.296 +0.559 —0.846 | 0.330 +0.244 —0.692 +1.088 —1.231
0.085 ©0.016 0053 0.109 0.186 o.210 0.099 0.310 0.582 0875 | 0.335 0.25I ©0.709 I1.I04 1.226
0.090 ©0.018 0060 0.122  0.207 0.215 0.103 ©0.324 ©0.604 o©0.9o0 | 0.340 0.258 0.727 IL.II9 1.220
0.095 ©.020 0.067 0.135 ©0.230 0.220 o©0.108 0.338 0.627 0.927 | 0.345 0.266 0.744 1.I134 1.214
0.100 ©0.022 0.074 0.I50 0.253 0.225 0.I113 0.353 ©0.650 0.954 | 0.350 0.274 0.761  1.148 | 1.202
0.105 +0.025 —0.081 +0.165 —0.276 | 0.230 +0.118 ~0.367 +0.673 —0.979 | 0.355 +0.282 —o0.778 +1I.161 —IL.I9I
o.110 ©0.027 o0.089 0.180 o0.30I | 0.235 o©0.123 0.382 0.696 1.004 | 0.360 ©.2g0 0.796 1.173  IL.178
0.1I5 0.030 ©0.097 0.196 0.327 | o.240 ©0.I29 0.397 0.719  1.027 0.365 o0.298 0.813 1.184 1.162
0.120 0.032 o0.106 ©0.212 0.352 | 0.245 ©.I34 0.4I12 0.742 1.049 | 0.370 0.3060 0.830 1.194 I1.I4§
0.125 0.035 0.I14 0.230 0.380 | 0.250 o0.140 0.428 0.765 T1.070 | 0.375 1.203 I.I2§

0.314 0.847

-
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$ Q,(:) Qz(f) Q3 (s) Qa(f) § Ql(-‘) Q:(s) Qa(f) Qa(s) § Qx(s) Qz(f) Qa(f) Q4(s)
0.380 +0.323 —0.864 +1.212 —1.103 | 0.605 +0.818 —1.338 +0.349 +1.065 0.830 +1.540 —o0.184 —1.477 —o.820
0.385 0.331 0.881 1.220 1.080 | 0.610 0.832 1.337 o0.302 1.104 | 0.835 1.559 0.125 I.466 0.92I
0.390 0.340 0.898 1.227 1.054 | 0.615 0.846 1.335 0.253 1.139 | 0.840 1.578 0.064 1.446 1.019
0.395 0.349 ©0.9I4 1.232 1.026 | 0.620 0.860 1.332 0.204 1.171 0.845 1.597 —o0.002 1.428 1.117
0.400 0.358 ©0.931 1.237 0.996 | 0.625 0.874 1.328 o0.154 1.202 0.850 1.616 +0.062 1.401 1.204
0.405 +0.367 —0.948 +1.241 —0.963 | 0.630 +0.888 —1.323 +o0.104 +1.231 | 0.855 +1.635 +0.128 —1.363 —1.200
0.410 0.376 0.964 1.243 0.930 | 0.635 o©0.902 I1.317 +0.052 .253 | 0.860 1.654 0.197 1.329 I1.37I
0.415 0.385 0.980 1.244 0.896 | 0.640 0.916 1.310 ©0.000 274 | 0.865 1.673 ©0.266 1.283 1.444
0.420 0.394 ©0.996 1.244 0.858 | 0.645 ~ 0.930 1.303 —0.053 .29I | o0.870 1.693 0.339 1.230 I.5I2
0.425 0.404 1.012 1.244 ° 0.818 | 0.650 0.945 1.294 ©0.106 .304 | 0.875 1712 0413 I1.I7I  1.568

e ]

0.430 +0.413 —1.028 +1.242 —0.778 | 0.655 +0.959 —1.285 —0.160 +1.315 | 0.880 +1.732 +0.489 —1.105 —1I.615
0.435 ©0.423 1.043 1.238 0.738 | 0.660 o0.974 1.275 o©0.214 1.322 | 0.885 1.751 0.567 1.029 1.654
0.440 0.433 1.058 1.234 0.695 | 0.665 ©0.989 1.263 0.267 1.323 | 0.8g0 1.771 0.647 0.949 1.679
0.445 ©0.443 1.073 1.228 0.649 | 0.670 I1.004 1.251 0.322 1.321 | 0.895 1.791 0.729 0.858 1.691
0.450 ©0.453 1.088 1.221  0.599 | 0.675 I1.019 1.238 0.377 1.315 [ o.goo 1.811 0.814 o0.760 1.688
0.455 +0.463 —1.103 +1.212 —o0.550 | 0.680 +1.034 —I.223 —0.431 +1.305 | 0.905 +1.831 +0.9o0 —o0.653 —1.670
0.460 0.473 1.117 1.202 0.50I | 0.685 1.049 I1.207 0485 1.291 | o.910 1.852 o0.990 0.537 1.636
0.465 0.484 . 1.131 1.191  0.450 | 0.690 1.065 I.I9I 0.540 I.272 | 0.915 1.872 1.080 0.409 1.580
0.470 0.494 1.144 1.179 0.399 | 0.695 1.080 I.I73 0.593 I.241 | 0.920 1.893 I1.I174 0.273  1.507
0.475 ©0.505 1.158 1.166 0.345 | o.7oo I1.096 I1.I54 0.647 1.216 | 0.925 I1.9I3 I1.270 0.128  1.407
0.480 +0.515 —I.I171 +1.I§1 —0.292 | 0.70§5 -+ I.III —I1.134 —0.70I +1.Tgo | 0.930 +1.934 +1.368 +0.033 —1.287
0.485 0.526 183 1.135 0.235 | o.fIo I.I27 I.II3 0.754 I1.I56 | 0.935 1.955 1.468 o0.197 1.139
0.490  0.537 .195 1.117 0.180 | o0.715 1.143 I.090 0.806 1.I113 | 0.940 1.976 1.571 0.378  0.965%
0.495 0.548 .207 1.098 0.123 | o0.720 1.I159 I1.066 0.856 1.069 | 0.945 1.997 1.676 0.567 0.759
0.500  0.559 .219 I1.078 0.065 | 0.725 1.I75 1.04I 0.906 1.020 | 0.950 2.018 1.784 o0.777 o0.52I

o.510 0.582 .240 1.033 +0.050 | 0.735 .208 0.987 1.004 0.915 | 0.960 2.061 2.006 1.214 +0.055

I
I
1
I
1

0.505 +0.550 —1I1.230 +1.056 —0.008 | 0.730 +1.192 —I.0I5 —0.956 +0.966 | 0.955 +2.039 +1.8g0 +0.986 —o0.252
I 1
1.250 - 1.008 ©.II0 | 0.740 1.224 0.958 1.050 0.842 | 0.965 2.082 2.r2I 1.448 0.400
1 1
I 1

0.5I5 ©0.593
0.520  0.605 .260 0.983 o.170 | 0.745 241 0.928 1.095 0.775 | ©0.970 2.104 2.239 1.712  0.787
0.525 0.616 .269 0.956 0.226 | 0.750 258 0.896 1.139 0.703 | ©0.975 2.126 2.359 1.98I 1.218

0.530 +0.628 —1.278 +0.927 +0.288 | 0.755 +1.275 —0.864 —1.181 +0.629 | 0.980 +2.148 +2.482 +2.266 +1.695
0.535 o0.640 1.286 0897 0347 | o.760 1.292 0.829 1.221 0.548 | 0985 2.170 2.607 2.566  2.220
0.540 0.652 1.204 0.866 o0.405 | 0.765 1.309 0.793 1.258 0.466 | 0.990 2.192 2.738 2.880 2.798
0.545 0.664 1.301 ©.834 0460 | o470 1.326 0.757 I1.294 0.379 | 0.995 2.214 2.866 3.210  3.432
0.550 0.676 1.308 0.799 0.520 | 0.775 1.343 0.717 1.327 0.289 | 1.000 2.236 3.000 3.548 4.123
0.555 +0.689 —1.314 +0.764 +0.577 | 0.780 +1.360 —0.676 —1.356 +0.196
o.560 o.701 I.3I19 0.729 0.630 | 0785 1.378 0.635 1.378 0.095
0.565 o0.714 1.324 0.692 0.685 | 0.790 1.396 0.50I 1.4I0 +0.002
o.570 o0.727 1.328 0.652 0.737 | 0.795 1.413 0.546 1.431 —0.098
0.575 ©0.739 1.332 0.612 0789 | 0.800 I1.431 ©0.499 1.449 0.197
0.580 +o0.752 —1.335 +0.571 +0.840 | 0.805 +1.449 —0.451 —1.465 —o0.302
0.585 0.765 1.337 ©0.529 0.891 | 0.810 1.467 0.401 1.475 0.405
o.5§o 0.778 1.338 0485 0.936 | 0815 1485 0.349 1482 o.570
0.595 ©0.792 1.339 0.442 0.983 | 0.820 I.504 ©0.296 1.485 0.616
o.6oo 0.805 1.339 ©0.395 1.024 | 0.825 1.522 0.241 1.483 0.718

2. Table of the function 2£%7,7.

T 2Eiyt T 2Fi3T T 2Fi5T T 2Fi3T T 2Fi3T T 2F43T T 2Fi3T T 2F7,7
0.00 1.0000 | 0.06 0.8936 | 0.20 0.7039 | 0.50 ©0.4432 | 0.80 0.2886 | 1.40 0.1291 | 2.60 0.0289 | 5.00 ©0.0018
0.01 0.9806 | 0.07 0.8777 | 0.25 0.6494 | 0.55 0.4119 | 0.85 0.2693 | 1.60 0.0998 | 2.80 0.0227 | 6.00 ©0.0006
0.02 0.9619 | 0.08 0.8622 | 0.30 o.6001 | 0.60 0.3831 | 0.g0 0.2513 | 1.80 0.0774 | 3.00 ©0.0178
0.03 ©0.9440 | 0.09 0.8472 | 0.35 0.5553 | 0.65 0.3566°| 0.95 0.2348 | 2.00 0.0603 | 3.20 0.0141
0.04 0.9267 | o.10 0.8325 | 0.40 0.5146 | 0.70 ©0.332I | I1.00 0.2IQ4 | 2.20 ©0.047I | 3.40 ©0.0III
0.05 ©0.9098 | 0.15 0.7645 | 0.45 0.4773 | 0.75 ©0.3095 | 1.20 0.1679 | 2.40 0.0368 | 4.00 0.0055

Leningrad, 1927 Oct. N.A.Kosirev, V.A.Ambarzumsian.
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Ausgemessene photographische Positionen Kleiner Planeten. Von X Resmmuth.

Planet Datum M.Z. Kgst. o () Aquin. Anschluisterne , Bm,
1927 CB 1927 Febr. 7 | 13848m3( oh33m46%79 | +19°55'40%6 || 1927.0 | Berl A 3868, Berl B 3814 I

» 1927 Febr. 8 | 14 20.1 9 33 11.43 | +19 58 40.4 » » »

» 1927 Mérz 4 | 10 29.4 | 9 16 23.5T | ‘+2I 18 34.0 » Berl B 3722, 3733+ EB.

» 1027 Mérz24 | 10 26.0 9 7 59.65 | +21 43 7.4 » Berl B 3658, 3698

» 1927 Mérz28 | 10 53.4 9 7 13.50 | +21 43 6.7 » » »

1927 CE 1927 Febr. 8 | 14 zo0.1 | 9 30 58.46 | +18 20 26.7 » Berl A 3846, Kii 4251 1
1927 CF » _ » 933 0.07 | +17 37 5.5 » Berl A 3866, 3879 I
1927 CG » | » 9 38 22.18 | +21 2 51.3 » Kii 4279, Berl B 3828 1
933 [1927 CH] 1927 Febr. 9 | 15 26.7 || 10 19 16.05 | +1I 30 53.9 » Lpz I 4007, 4010 + EB. 2,3

» 1927 Febr.23 | 12 86| 10 8 1.77| +13 39 41.5 » Kii 4498, Lpz I 3970

» 1927 Médrz21 | 8 35.4 || 9 52 17.89 | +16 40 9.4 » Berl A 3977, 3989
1927 CJ 1927 Febr. 10 | 16 33.7 | 11 47 29.37 | + 2 18 17.8 » Alb 4356, 4371 4
1927 CK » » 11 47 55.11 | + 4 40 12.9 » Alb 4359, Lpz II 5948 4
1927 CL » » . | 11 52 17.69 | + 4 44 36.9 » Lpz IT 5948, Kii 5299 4, 1
1927 CM » » 11 55 2.84 | + 2 43 48.0 » Alb 4383, 4395 ’

1927 CN » " I1 55 34.01 | + 2 45 32.6 » » »
1927 CO » » 1z I 4.04 | + 3 II 19.7 » Alb 4414, 4419+ EB.

» 1927 Mérz 4 | 13 21.8 || 11 48 4877 | + 5 o 7.2 » Lpz II 5934, 5950 5 .
1927 DB 1927 Febr.23 | 12 8.6 || 10 18 o007 | + 8 36 29.4 » Lpz II 5442, 5467 5
1927 EA 1927 Mérz 3 | 10 18.5 | 9 21 59.19 | +17 53 54.7 » Berl A 3793+ EB., 3820 I

» 1927 Mérz 4 | 10 29.4 | 9 21 15.30 | +17 52 30.7 » Berl A 3796, 3801

» | 1027 Mérzz24 | 10 26.0|| 9 9 5540 | +17 6 6.2 » Berl A 3727, Kii 4096

» | 1927 Marz28 | 10 53.4 | 9 9 19.43 | +16 52 21.5 » Berl A 3719, 3734 6
1927 FA 1927 Mérz 21 8354 || 10 21998 | +14 I 2.9 » Lpz I 3932, 3948 5
1927 HA 1927 April 22 | 10 58.8 | 14 10 36.66 | — 3 35 52.9 » | Strb 5053, 5070
1927 JA 1927 Mai 3| 11 o7 | 14 32 4599 | — 5 22 2.7 » Strb 5164, 5173 +EB. 7
1927 LA 1927 Juni 1 | 11 46.3 || 16 35 10.51 | + I 34 16.7 » Alb 5495, 5528
1927 MA 1927 Juni 29 | 12 18.5 || 19 38 14.11 | — 5 6 I.I » Strb 6753 +EB., 6780

» 1927 Juli 4 | 12 23.7 | 19 33 56.98 | — 5 8 23.3 » Strb 6711, 6744 ' 1
1927 OA | 1927 Juli 30 | 11 39.2 | 22 23 46.06 | +11 59 22.5 » Kii 9942, Lpz I 8972
1927 PA 1927 Aug. 3 | 13 12.6 | 22 59 36.37 | —10 48 20.4 » *a,%0 8
1927 QA 1927 Aug. 29 | 10 55.5 | 23 I4 3407 . — I 37 5.9 » Strb 8017 + EB., Nic 5808 3
1927 QB » .14 20.5 || 23 30 7.65 j — 6 18 40.9 » Ott 8339, 8352 6
1927 QC 1927 Aug. 30 | 10 51.0 | o0 13 29.86 | +13 9 47.0 » LpzI53+EB, 78

» 1927 Sept. 28 | 10 34.1 || 23 54 15.49 | +1I3 16 27.7 » Lpz I 9501, 9514
r1927 QC 1927 Okt. 16 | 8 13.6 || 23 41 37.88 | +1II 49 31.0 » 1+ Lpz I 9422, 9426 9, 1
1927 QD 1927 Aug. 30 | 10 51.0 | © I5 2I.I4 | +1I5 37 48.7 » | BerlA 56+EB., LpzI 85

» 1927 Sept. 28 | 10 34.1 || 23 52 45.14 | +1I5 27 21.6 » | Berl Ag734+EB., Lpz 19499 5

» 1927 Okt. 16 | 8 13.6 || 23 39 22.60 | +14 27 52.6 » | LpzI 9403, Kii ro511
1927 QE 1927 Aug. 30 | 10 51.0 || 0 23 o.10o | +16 19 18.7 » Kii 144+ EB., Berl A 112+EB. | 10, 7

» 1927 Sept. 28 | 10 34.I1 || o 2 1.76 | +1I5 45 10.0 » Lpz I 9540, Kii &

» 1927 Okt. 16 | 8 13.6 | 23 48 53.65 | +14 18 14.7 » Lpz I 9458, 9483 5
1927 QF 1927 Aug. 30 | 14 21.0 || 0 36 42.45 | —, 0. 2 29.2 » Nic 102+ EB,, 114

» 1927 Sept. 26 | 11 35.1 || © I9 2.54 | — I 27 17.4 » Nic 45, Strb 81

» 1927 Okt. 26 | 9 38.6 | 23 58 33.26 | — 2 37 53.6 » Strb 8186, 1+ EB.

1927 QG 1927 Aug. 30 | 14 21.0 | o 39 46.99 | + o 26 26.9 » Nic 115+ EB., 126
1927 QH » » 0 45 48.17 | — 1 29 7.9 » Strb 176, Nic 148 + EB.

» 1927 Sept. 26 | II 35.1 || o0 30 1597 | — 4 7 23.0|. » #c, %d

» 1927 Okt. 26 | 9 38.6 || o 11 30.55 | — 6 23 18.6 » Ott 33, 46

» 1927 Okt. 27 | 9 28.0| o 11 3.94 | — 6 25 54.5 » S »

23
—— —
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